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Abstract

Recent tragedies such as Hurricane Katrina, 9/11, and the 2008 Sichuan Earthquake have revealed a
need for methods to evaluate and plan for the impact of extreme events on critical infrastructure. In
particular, awareness has been raised of the threat that a major disruption will lead to cascading failures
that cross boundaries between interdependent infrastructure sectors, greatly magnifying human and
economic impacts. To assist in planning for such extreme events, researchers are developing modeling tools
to aid in making decisions about how best to protect critical infrastructures. We present some of the
capabilities of this modeling approach as well as some of the challenges faced in developing such
applications based on our experience with the Critical Infrastructure Protection Decision Support System
(CIPDSS) model, developed for use by the Department of Homeland Security. A set of disruptions to road
and telecommunication infrastructures is implemented in CIPDSS and the modeled disruptions to the
original infrastructure as well as cascading effects on other infrastructure sectors are discussed. These
simulations provide insights into the potential of this approach.

KEY WORDS: critical infrastructure, disaster and risk management, infrastructure interdependencies,
systems dynamics modeling, urban studies

Introduction

In the wake of 9/11 and the devastating natural disasters of recent years, the impact
of major disruptions to critical infrastructure (e.g., telecommunications, transpor-
tation, emergency services) is receiving increased attention from the scientific
research and policy communities. Of concern is the threat that the inherent inter-
dependencies of critical infrastructures can lead to cascading failures which cross
boundaries between both technological and social structures (NIPP, 2006;
O’Rourke, 2007).

This type of vulnerability was tragically illustrated by the extensive indirect
effects of the September 11 attacks (Mendonca & Wallace, 2006; O’Rourke, Lembo,
& Nozick, 2003), for example, extensive disruption to telecommunications caused
by ruptured water mains, and of Hurricane Katrina (Gray & Hebert, 2007; Moore
& Kellogg, 2007).

The high degree of dependency (unidirectional) and interdependency (bidirec-
tional) that exists between sectors of infrastructure requires that the whole system
be considered when assessing the impacts of such events or evaluating methods
of intervention (Little, 2004). Examples of such dependency-related issues arising
from the aftermath of Hurricane Katrina are the failure of oil pipelines and
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telecommunication systems due to loss of power; the slowed reopening of New
Orleans due to contamination of the city’s water distribution system; and the
difficulty of responders in organizing rescue and relief efforts in the light of inop-
erable communication and data-gathering equipment.

In the case of oil pipelines and cellular telecommunication systems, legislative
attempts to address this vulnerability by mandating backup power capacity for these
facilities were faced with the difficult trade-offs (and resulting controversy) between
the risk demonstrated by Katrina and the cost and difficulty in making changes to
such ubiquitous infrastructure. Similar difficulty is raised in determining how best
to improve security of the very large number of individual facilities that make up
many other critical infrastructures (e.g., chemical plants, water treatment facilities).
To best protect public welfare, such policy and investment decisions related to
critical infrastructure must be made within an objective framework that takes into
account all available information including the dependencies and interdependen-
cies within and across infrastructures.

Because of the complex and interlinked nature of critical infrastructure, models
of these systems and their interdependencies have been proposed as useful tools to
aid decision making by government and infrastructure managers (Conrad et al.,
2006; Min et al., 2007). Modeling systems can potentially provide a number of
benefits in the process of risk assessment and evaluation of risk mitigation methods.
Through combining the knowledge of many subject-matter experts, and data from
multiple sources, models make available a greater range of quantitative information
and knowledge of system connectivity and behavior than it would be otherwise
practical for one person to acquire or use effectively. This is particularly important
when assessing the interdependence of critical infrastructure where a large number
of infrastructure systems interact, sometimes in nonlinear ways. In addition, indi-
rect effects may not be well known to individual expert in a single area of infra-
structure and without significant study these interdependencies may be difficult to
quantify. For example the processes and degree by which loss of telecommunica-
tions reduces the level of function of emergency services or business is of vital
importance for planning emergency response, or estimating economic impacts of a
telecom disruption, but could probably not be easily quantified by a manager in any
of these three fields.

To describe impacts across multiple infrastructures requires large amounts of
descriptive data from each infrastructure and expertise from many disciplines.
When such multidisciplinary problems need to be addressed, the convening of a
panel of experts is a common approach used to develop a comprehensive assess-
ment for planning. Table-top exercises are used to address a similar need for
expertise from multiple critical infrastructure components, as well as serve to
improve communication and coordination. However, such group exercises are
difficult and costly to carry out, and so cannot be applied to every question that
encompasses multiple infrastructures. Models of critical infrastructure interaction
which have been sufficiently validated, ideally against real-world data, but also
through review of subject matter experts, can supplement and, in some cases,
replace panels of experts, as well as inform table-top exercise scenarios. In these
applications, the use of models provides the advantage of allowing a user with
general-subject knowledge to answer complex questions within a consistent and
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quantitative framework, which allows for comparison between different types of
hazard events and potential mitigations. However, when applied to a type of
analysis or scenario, which is not well-established, expert judgment is still necessary
to understand limitations imposed by the model’s methodology or assumptions and
to guide model development and refinement as needed to answer new questions.

Our interest in systems frameworks for risk management resulted in our per-
forming, as an independent third party, an evaluation of the predictive accuracy of
the Critical Infrastructure Protection Decision Support System (CIPDSS) when
applied to post-Katrina conditions in Baton Rouge, LA. This article describes our
reflections on the potential of such modeling tools, informed by this experience. We
describe the CIPDSS model and the way in which it attempts to meet the need for
information about complex interactions between critical infrastructures. Two sets of
simple emergency scenarios implemented using CIPDSS are used to demonstrate
the potential utility of this type of modeling system. Challenges faced in developing
such applications as well as a critique of some aspects of the CIPDSS model are also
presented. For these analyses, the late-2005 version of the CIPDSS software was
used; the software undergoes continual review and improvement.

The CIPDSS Model

CIPDSS is a modeling application that has been developed through collaboration
between Los Alamos, Sandia, and Argonne National Laboratories, sponsored by the
Science and Technology Directorate of the U.S. Department of Homeland Security
DHS. It is presently one of the modeling capabilities of DHS’s National Infrastruc-
ture Simulation and Analysis Center (NISAC). While many other models exist for
the simulation of various aspects of critical infrastructure behavior (see Pederson
et al., 2006, for a review and comparison of recent efforts in critical infrastructure
modeling), CIPDSS is unique in providing an aggregate-level model of all critical
infrastructure sectors and their major interdependencies. CIPDSS is intended as a
tool to allow government (federal, state, and local) and industry decision makers to
determine what consequences might be expected from disruptions to infrastruc-
ture, explore the mechanisms behind these consequences, and evaluate mitigations
for a particular risk. It is intended for analysis of high-level behavior of metropoli-
tan or regional infrastructure. CIPDSS does not replace more detailed sector
specific models but enables analysis which takes into account the way disruptions in
one infrastructure sector may propagate to other infrastructure systems.

DSS encompass a broad range of computer applications which organize and
present information in order to facilitate decision making (Power, 2002). Simulation
models are one class of DSS and have been widely applied in business and engi-
neering management. CIPDSS is a system dynamics simulation model of all critical
infrastructure sectors as defined by Homeland Security Presidential Directive 7
(e.g., water, public health, emergency services, telecom, energy, transportation) and
their major interdependencies at an aggregate level. Although not evaluated in this
analysis, CIPDSS also incorporates multiattribute utility functions derived from
interviews with infrastructure decision makers, which can be used as an aid in
evaluating potential mitigation strategies.

Decision Making for Extreme Events 411



At present CIPDSS is intended for deployment by its developers or other expert
users, but easy to use interfaces for exploring specific questions have been devel-
oped as well (LeClaire et al., 2007). The developers of CIPDSS have applied it to a
variety of scenarios. In one study, it was used to model an influenza outbreak and
evaluate the impact of interventions and public behavior on spread of the infection
(Fair et al., 2007). In another application, it was used to quantify the impact of
blackouts on telecommunications and emergency services (Conrad et al., 2006).
Other unpublished applications implemented by the national labs quantified the
cost and benefits of various mitigations for a toxic chemical release and predicted
the impacts of displaced people on Baton Rouge subsequent to Hurricane Katrina.
Order of magnitude prediction accuracy was the initial operational goal for CIPDSS
with improvements expected after deployment.

The system dynamics approach used by the CIPDSS model is a methodology for
studying complex systems involving feedbacks or interdependencies. A system is
broken down into simple objects or processes which interact to produce complex
behaviors. To produce a system dynamics model, feedback loops, stocks, and flows
are used to represent the system under study based on the knowledge of a subject-
matter expert. Feedback loops indicate connection and direction of effects between
objects. Stocks represent quantities or states of the system, the levels of which are
controlled over time by flow rates between stocks. A simplified example of these
components taken from the CIPDSS model of road traffic is illustrated in Figure 1.
In the small segment of the model pictured, the volume of traffic present on the
road (Tro: Traffic) is a stock controlled by flows determined by the entry and exit
rate of vehicles, which are dependent on a number of other variables not pictured.
Through a series of steps not shown, a feedback loop is set up between Tro: Traffic
and the entry rate decreasing entry to the roads under heavy traffic conditions. The
number of people successfully completing trips (Tro: Trips Completed) is calculated
by multiplying the exit rate by the average number of occupants per vehicle
(variable not shown).

In order to create a quantitative system dynamics model, formulas are developed
to calculate a value for each variable. The model is tested to verify that it reproduces
the behavior of interest in the system and it then provides a framework to quantify
the effects of hypothetical events, and to compare proposed interventions. It may
also serve to identify inconsistencies between processes which occur in reality and
the mental models used by decision makers. This type of model has been applied in
academic research (see for example the publication System Dynamics Review) as well
as business, supply-chain, and operations management. In economic applications,
models developed using the system dynamics approach have been used to answer
such questions as what the impacts of regulation, investment choices, and pricing

Tro: Traffic Tro: Trips Completed 

Tro: Exit Rate

Tro: Entry Rate 

Figure 1. Simplified Example of CIPDSS System Dynamics Framework for Road Traffic
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might be on profitability as well as optimization of manufacturing and retail
stocking.

CIPDSS has been programmed in Vensim, a commercial system dynamics mod-
eling software package. In the late 2005 version of CIPDSS, which is the subject of
this investigation, 14 critical infrastructure systems are modeled. Teams of one to
three analysts created the software code for each infrastructure system, with col-
laboration between the teams occurring to model system interdependencies.
Overall the model utilizes more than 2,250 variables. Infrastructure systems are
subdivided into more than 100 subsectors; for example, bus, road, and subway
subsectors are created within the transportation system. This results in over 5,000
potential interactions between infrastructure subsectors; as this number of potential
interactions is too large to evaluate, expert judgment was used to identify and
represent only the most significant interactions between subsectors.

Systems within each subsector are modeled at an aggregate level. For example,
within the metropolitan scale model discussed here, all roads within a city are
treated as an aggregate entity with properties similar to a single road. This contrasts
with the approach used, for example, in a metropolitan travel demand model
where individual roads are represented. An aggregate approach makes it possible
to directly parameterize the dependency of traffic flow on other subsectors, for
example, availability of electricity, and also reduces the need for finely resolved
site-specific data and analysis. However when applying the model to a specific
location aggregate data describing local infrastructure (e.g., population, number of
hospital beds, electricity production) must be obtained which may represent a
significant task.

Because of the complexity of the systems and interactions, identification and
parameterization of dependencies can be challenging. In addition, the importance
of various types of interactions between infrastructures naturally differ depending
on the type of perturbation to the system and the application for which model
results are intended. Even at the level of complexity present within the CIPDSS
model, the model architecture and processes which it can represent inevitably
reflects the priorities and assumptions of its programmers, and processes important
to a particular scenario may be left out. Such an observation can be made with
regard to the implementation of the CIPDSS model. For example, changes in
population caused by evacuation (as discussed in more detail later) or immigration
propagate through only some infrastructures. Presumably this is the case because
population movement was not envisioned during model development as a driving
mechanism for a scenario.

Although CIPDSS incorporates considerable research to identify interdependen-
cies between critical infrastructure and much progress has been made in modeling
these interactions, there has been relatively limited validation of the model by
comparison with real world data. Validation efforts by the developers of CIPDSS
have consisted primarily of conceptual validation only for the more important
descriptive variables for each infrastructure subsector to determine if the model
produces a reasonable response to perturbations. This validation included sensitiv-
ity analysis, as well as review of model processes by subject matter experts. Of
course, comparison with real-world data is only possible for scenarios which have
a close corollary in historic events, limiting its application by CIPDSS developers.
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Validation is also hampered by the difficulty in obtaining operational data for a wide
variety of infrastructures and particularly data, which quantifies the interdepen-
dency between various infrastructures. This is further complicated by the fact that
much of the critical infrastructure is in the private domain and descriptive infor-
mation may be considered proprietary or of competitive value.

The range of temporal resolutions required of an all-purpose DSS presents
additional challenges. Model systems may be required to represent behaviors which
in reality take place on time scales from seconds to months or years (Pederson et al.,
2006). For example, a time scale of minutes to days is necessary to represent
short-term events such as blackouts or deliberate attacks on infrastructure while
resolution on the time scale of weeks may be required to model the temporal
development of an infectious disease outbreak and even longer periods might be
necessary to resolve long term impacts of events such as major natural disasters.
The difficulty of validation magnified by the challenge of data held in the private
domain and wide range of temporal scales which a modeling system must handle
are significant limitations on successful use of models to inform decisions about
critical infrastructure. For any model system to meet the above challenges requires
syntheses of input from a large number of potential users as well as flexibility of the
modeling system to allow for future development.

Disruption Scenarios

The utility of CIPDSS and the challenges described earlier are illustrated by a series
of scenarios, executed by the authors, which reflect disruptions to the road and
telecom systems modeled. Simple examples were chosen which could be easily
presented but which display CIPDSS capability of propagating disruptions across
infrastructures. To begin the analysis, CIPDSS is run for a base case scenario
representing a generic large city with a population of five million operating under
normal circumstances. Then, two sets of scenarios are run on top of the base
scenario: in the first case, various disruptions to the road system are simulated, and
in the second case disruptions to the telecommunications system. The scenarios
were run using CIPDSS and are illustrated here with results that show the first
three days of output. The results describing the effects on infrastructure of the two
disruption scenarios are discussed in the next section, and comparisons are made to
the results of the base-case scenario run.

Disruptions to the Road System

Disruptions to the road system were modeled using three disruption scenarios. The
first disruption scenario depicts a 25 percent loss in roadway capacity which begins
at the start (time = 1) of the first day (Figure 2, run 2A). This represents loss to
capacity which might result from damage to the entire road system as in the case of
an earthquake. This damage might also represent the loss of a particular piece of
infrastructure, such as a bridge, which, because of its central location, creates a
bottleneck which impacts the operation of the entire road system. As CIPDSS
considers roads in the aggregate, an estimate must be made by the user, from a
transportation model or expert judgment, as to what extent damage to an indi-
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vidual infrastructure element would affect the entire road system. Roads are
assumed to remain at reduced capacity for the entire model run, unless additional
input is included to describe repair of roads.

The second scenario includes the same loss of road capacity while at the same
time initiating a massive evacuation where a quarter of the city’s population
attempts to leave the city over a period of five hours starting in the early morning
(shown at time = 1.3 days) on the first day (Figure 2, run 2B). By default model
assumptions, this evacuation is assumed to take place entirely by personal vehicle
with a single passenger per vehicle. The third scenario is the same as run 2B, but
a government alert is issued requesting that only essential workers report to job sites
at the same time as the evacuation order (2B-EWO). This serves to eliminate most
(90%) of normal daily travel, reducing competition with evacuees for road capacity.
Note that during periods of low traffic density the trip duration multiplier remains
at a value of one for all runs, so only the base run is visible.

Results of these three scenarios as well as the base run are illustrated in Figure 2
with the model variable Trip Duration Multiplier which represents the ratio of the
current time required to complete a trip to the time taken to complete a trip when
traveling at free-flow speed. The free flow speed of a road is defined as the speed
of a vehicle under favorable weather conditions with minimal interaction with other
vehicles, and is similar to the speed limit. Trip Duration Multiplier is an intuitive
metric of quality of road service, as it represents the experience of road users and
can be easily translated into delay time experience by commuters or other services
dependent on roadways (e.g., emergency services, delivery of supplies). As is typical
of traffic patterns within urban areas in the base run increases in travel time are
observed during morning and evening rush hours. Default model parameters
create higher traffic density during morning rush hour but these patterns can be
adjusted to match behavior to actual traffic patterns observed in a given city.

In the scenario where operational capacity of the road system decreases (run 2A),
there is an increase in travel times only during normal rush hour periods by a factor
of 3. In the evacuation scenario (run 2B), the addition of evacuees to normal road
traffic results in roads that quickly reach capacity, resulting in gridlock (indicated by
a travel time multiplier which exceeds the scale of the graph). In this scenario, the
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Figure 2. Modeled Trip Duration Multiplier for Road Damage (2A), Evacuation (2B), Evacuation with Restricted
Travel (2B-EWO), and Normal Operation (base run)
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model predicts that gridlock persists for approximately 14 hours until the work day
ends and the evacuation is completed. In the same scenario, with an essential-
workers-only alert ordered at the same time as the evacuation order (run 2B-EWO),
the number of evacuating vehicles results in severely slowed traffic but the road
system does not reach gridlock and the evacuation is completed within the desired
five-hour period. In the analysis of an actual scenario these intuitive results would
be validated and possibly refined by comparison with a detailed evacuation trans-
port simulation, the value of CIPDSS lies in the estimation of cascading effects in
other infrastructure sectors.

Disruptions to the Telecommunications System

Two scenarios were run for disruptions to the telecom system. The first (run 3A)
specifies a 25 percent loss of trunk line (the high-speed connection between tele-
phone central offices) capacity which occurs at the start of the first day (time = 1).
Default calculations of repair time result in trunk line damage taking approximately
one month to fully repair. Hence trunk capacity remains essentially unchanged
during the three-day period examined here. Repair time could be modified by
changing parameters (such as additional investment in labor or equipment for
repair) within a telecom repair subsector of the model. The second scenario (run 3B)
has the same loss of trunk capacity and also a sudden increase in call demand. This
increase results in three times the normal call level but the normal calling pattern
with time of day is retained. This increase in demand begins at the start of the first
day (time = 1) then decreases and returns to normal by the end of the third day.

The output variable Wire-line Availability (shown in Figure 3) represents the
predicted fraction of land line call attempts which connect successfully on the first
try. Plots of availability of cellular service would appear similar. Under normal
circumstances almost all calls connect on the first try. Loss of 25 percent of trunk-
line capacity (run 3A) causes only a very small number of calls to fail during periods
of high demand because there is still excess trunk capacity available. However,
significant impacts on other critical infrastructure sectors result from loss of trunk
capacity, as described further later. When call demand is higher than normal, as in
scenario 3B, the number of calls which are dropped increases sharply. During
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period of maximum demand (during business hours) on the first day of the simu-
lation, less than 10 percent of calls are connected on the first try, with switch capacity
to handle the number of calls being the limiting factor.

Effects of Disruptions on Other Infrastructure Systems

The strength of the CIPDSS model is in allowing investigation of how disruptions
in one infrastructure propagate to other infrastructure systems. Examples of this
type of propagation can be observed from the scenarios presented earlier for the
road and telecommunications sectors. The causative link between the initial disrup-
tion and the current infrastructure can be readily identified and explored, poten-
tially allowing for the evaluation of remedial measures. In the following we look at
the behavior of a small selection of output variables from other infrastructure
subsectors to illustrate the usefulness of this ability.

The first example of propagation of disruptions to other infrastructure systems
is model predictions of Emergency Medical Services (EMS) Response, the number
of calls that can be responded to (or that are demanded, whichever is smaller),
measured in calls/hour. The base run shows a typical pattern of EMS response,
reflecting greater frequency of calls for EMS service from midday through evening.

In the scenarios involving disruption to the road system, little change in EMS
response is observed when rush-hour travel times increase by a factor of three (run
2A, Figure 4). The decrease in EMS response rate as a result of increased travel time
is minimal because the model assumes that ambulances are given right of way, and
so their performance is not significantly impacted until traffic density is quite high.
When an evacuation is ordered (run 2B), the capacity of the road system is reached,
causing gridlock, and significantly decreasing the rate at which EMS systems can
respond to calls. EMS response is limited by traffic congestion until late at night,
when the evacuation is completed and traffic abates at the end of the day. Under
model assumptions, those calling for EMS service are assumed to remain in queue
until they can be reached. Hence, late at night and into the morning of the second
day, calls are answered at a much higher rate than normal, as EMS works through
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this backlog of calls. With an essential-workers-only alert in place (run 2B-EWO),
the same effect is observed but to a much reduced extent.

In the first scenario (run 3A), where trunk capacity is lost, results are similar to
the base run, as few wireline or wireless telephone calls fail to connect (Figure 5).
When, in addition, the telephone systems become overloaded (scenario 3B), during
the first day, EMS response decreases as both wireline and wireless calls fail to reach
the emergency services operator. The possible response rate also decreases because
loss of telecom services decreases the effectiveness of the EMS. Late that night when
the overload of the phone system subsides, and more calls reach emergency services
the volume of EMS response begins to increases back to normal levels (converging
with the base run).

In the case of these telecom scenarios, two different assumptions come into play
to describe the impacts of telecom on EMS. It is assumed that those who reach an
emergency services dispatch but who do not receive a response for up to several
hours because of road conditions will remain waiting for help, while those who fail
to reach an emergency services dispatcher on the first try will abandon their
attempts to contact help. Similar calculations are made by the model of the response
of law enforcement and fire fighters, and similar perturbations in the response rate
are seen in these services. This illustrates an opportunity for further model devel-
opment. The simple but inconsistent assumptions about the behavior of those in
need of EMS service who find their access to service blocked because of failures of
the road and telecom systems could be easily improved for greater realism.

We can also investigate the effect of road and telecom disruptions on the hospital
system. One summary metric for the hospital system is Number Treated, the number
of patients being treated at any given time as inpatients within the hospital system.
In the base run this variable has a daily periodicity resulting from typical patterns
of higher discharge rates in the morning and higher admission rates in the after-
noon. In the case of a 25-percent loss of road capacity (run 2A) there is no impact
on the number of patients within the hospital system (the run overlaps with the
base-run scenario). However, when traffic volume increases to the point of gridlock
as observed in the evacuation scenario (run 2B), the number of those afflicted by
illness who are able to reach the hospitals decreases sharply, resulting in a decrease
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in the inpatient population. When traffic density decreases and gridlock ends, the
number of patients treated slowly increases, converging back to a steady state value.
A much smaller decrease in the number treated is observed for the evacuation
scenario when an essential-worker-only alert (run 2B-EWO) is in place. As shown in
Figure 6, no impact is observed on this value from the telecom scenarios (runs 3A,
3B overlap with the base run) as they are assumed to have no strong linkages, which
might prevent patients from reaching the hospitals. This scenario indicates an area
for further development of the model’s treatment of interdependencies in that the
variables describing the evacuation scenario are coupled to the hospital system
through the traffic sector but not coupled directly to population. As a result, the
expected 25-percent decrease in population as a result of the evacuation is not
reflected in decreased demand for hospital or other services.

A final summary statistic, total business revenue losses, represents the cumulative loss
from all lost consumer spending (Figure 7). For comparison, the base-run model
calculation of total nominal spending over the same four-day period is $740 million.
Calculation of nominal spending and lost spending is divided into sections based on
transaction mode (cash, check, credit, and automatic payment spending). Division
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of spending between these modes is based on average data from the American
Bankers Association. Spending is also divided into seven subcategories describing
the items purchased (e.g., housing, food, transportation) based on averages of U.S.
Department of Commerce data. Various disruptions will impact the spending
modes differently; for example, only scenarios 3A and 3B impact cash spending
because they decrease the number of operating ATMs (through loss of telecommu-
nication trunk lines) while all scenarios impact check and credit transactions.

Increased travel times (run 2A) result in a $7 million decrease in spending
through check and credit modes. Evacuation (run 2B) results in a larger $35 million
loss of revenue also from the check and credit modes. The essential-workers-only
alert (run 2B-EWO) results in the highest loss, $52 million from the same modes,
because a large number of businesses are impacted by lack of workers. In the case
of telecom disruptions, scenario 3A results in a loss of over $29 million, with losses
from all modes. This is because operational capacity of trunk lines is linked to
availability of business data networks and hence processing of these transactions
within the model. Although in reality loss of normal telephone service would be
expected to result in lost revenue, scenario 3B results in the same losses as 3A
because phone availability and spending are not coupled within the model.

Estimates of lost business revenue resulting from various disruptions and pro-
posed mitigations are highly useful. In many cases monetary losses resulting from
the loss of critical infrastructure services can easily exceed the costs resulting from
direct damage. However, the previous example illustrates the need for further
development in that business losses are not sensitive to overloading of the telecom
system as might be expected. These loss estimates are only useful if they can be
relied on to capture all major interdependencies. This can only be achieved by
coordinated model development between the sector teams, coupled with iterative
model development through comparison with real-world data, but without these
steps real-world applications are limited.

Conclusion

These scenarios help to illustrate some general observations about modeling of
critical infrastructure for decision making. CIPDSS generally performs as intended,
allowing for rapid production of scenarios that allow easy comparison of very
different types of events and their impact across multiple infrastructures. Mitigation
or response scenarios (such as the essential-workers-only alert or investment in
telecom repair) can then readily be investigated through programming of addi-
tional scenarios. A single model, such as CIPDSS, which can be applied to a wide
variety of disruptions and mitigations, is particularly helpful in that it allows for
comparisons of very different types of events, including indirect effects, using a
consistent set of metrics.

In these ways, a DSS can help to provide a quantitative framework for evaluation
of various scenario consequence and mitigation strategies, particularly for events
that cross infrastructure system boundaries because of widespread physical damage
or cascading effects. This type of broad application differs significantly from other
types of emergency planning models, for example, evacuation planning models,
which are intended to address a single specific problem. This capability can assist

420 Nicholas Santella, Laura J. Steinberg, and Kyle Parks



government and infrastructure managers in making rational and defensible choices
determining resource allocation and policy for hazard mitigation and in planning
for emergency response.

Opportunities for further development were observed. One example is the
propagation of changes in the population as a result of in-migration or evacuation,
which is present in CIPDSS in only some of the infrastructure sectors. Thus, some
obvious population effects are left out of the model, such as the exclusion of the
effect of evacuation (i.e., a decrease of population) on the number of hospitaliza-
tions. CIPDSS also exhibits a problem often faced by developers of large-scale
models spanning many interconnecting subroutines: a great deal of coordination
between sector modeling teams is needed in order to insure consistency in process
assumptions. The CIPDSS model formulation provides several illustrations of
this modeling challenge, including conflicting assumptions about the behavior of
persons denied timely emergency services because of loss of telephone service
versus loss of transport capacity. Another example is the model’s decoupling of
overloads to the telephone system from monetary losses within the business sector.

Simulation models like CIPDSS characteristically undergo frequent revision as
model developers refine their system understanding. Thus, while the late-2005
version of the model was deployed by DHS for a number of investigations, includ-
ing the one reported on here, the model has since undergone several revisions. It
now includes a number of improvements, which include enhanced evacuation
modeling capabilities and more extensive infrastructure interconnectivity. In a
sense, the use of CIPDSS while it simultaneously undergoes improvement is
a reflection of the real-world tension between the necessity of deployment of a
national security tool to meet pressing needs and the recognition that additional
model development and refinement are ultimately needed to create a more useful
tool.

One way that model refinements are identified is through validation exercises. As
model results are only of use if they accurately represent real-world consequences,
it is critical that model results be compared with observational data from real events.
This is necessary perhaps not so much to evaluate computational methods or input
data as to test the model’s conceptual framework against real-world complexity.
Modeling of relevant scenarios proposed by independent sources is another useful
tool for model evaluation. As ongoing work on infrastructure modeling continues to
deliver improvements, it is expected that CIPDSS and similar decision support
models for infrastructure systems will become increasingly useful tools for evalua-
tion of the risks associated with large-scale disruptions that transboundary crises are
sure to cause.
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